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Abstract. Gutzwiller’s trace formula for the semiclassical density of states in a chaotic
system diverges near bifurcations of periodic orbits, where it must be replaced with uniform
approximations. It is well known that, when applying these approximations, complex predecessors
of orbits created in the bifurcation (‘ghost orbits’) can produce pronounced signatures in the
semiclassical spectra in the vicinity of the bifurcation. It is the purpose of this paper to demonstrate
that these ghost orbits can also undergo bifurcations, resulting in complex, nongeneric bifurcation
scenarios. We do so by studying an example taken from the diamagnetic Kepler problem, namely
the period quadrupling of the balloon orbit. By application of normal form theory we construct
an analytic description of the complete bifurcation scenario, which is then used to calculate the
pertinent uniform approximation. The ghost orbit bifurcation turns out to produce signatures in the
semiclassical spectrum in much the same way as a bifurcation of real orbits would.

1. Introduction

Since its discovery in the early 1970s, Gutzwiller’s trace formula [1, 2] has become a widely
used tool for the interpretation of quantum mechanical spectra of systems whose classical
counterpart exhibits chaotic behaviour. It represents the density of states of the quantum
system as a sum over a smooth part and fluctuations from all periodic orbits of the classical
system, where the contribution of a single periodic orbit reads

Apo = Tpoei(Spo/h̄− π
2µpo)√| det(Mpo− I )|

(1)

with Tpo, Spo,Mpo, µpo denoting the orbital period, action, monodromy matrix and Maslov
index, respectively. This formula assumes that all periodic orbits can be regarded as isolated,
which is the case, in particular, for completely hyperbolic systems. In the generic case of mixed
regular–chaotic dynamics, however, the formula fails whenever bifurcations of periodic orbits
occur, because close to a bifurcation periodic orbits approach one another arbitrarily closely.
The failure of the formula manifests itself in divergences of the periodic orbit contributions (1).

The generic cases of period-m-tupling bifurcations were studied by Ozorio de Almeida
and Hannay [3,4], who derived uniform semiclassical approximations by taking into account
all orbits involved in a bifurcation collectively. Their solutions were refined by Sieber
and Schomerus [5–7], who derived uniform approximations for all types of bifurcations of
codimension one in generic Hamiltonian systems with two degrees of freedom. Their formulae
smooth the divergence in Gutzwiller’s trace formula, and, in contrast to the approximations
in [3, 4], asymptotically approach the result of the trace formula (1) for isolated periodic
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orbit contributions as the distance from the bifurcation increases. As a characteristic feature,
uniform approximations require the inclusion of complex ‘ghost orbits’. At the bifurcation
points, new periodic orbits are born. However, before they come into being, the orbits possess
predecessors—ghost orbits—in the complexified phase space. As was shown by Kuśet al [8],
some of these ghost orbits, which in the limit ¯h→ 0 yield exponentially small contributions,
have to be included in Gutzwiller’s trace formula (1). As a result, in constructing a uniform
approximation complete information about the bifurcation scenario including the ghost orbits
is required.

A closer inspection of the bifurcation scenarios encountered in practical applications of
uniform approximations reveals that bifurcations of codimension two, although generically
unobservable if only one control parameter is varied, can nevertheless have an effect on
semiclassical spectra, because in their neighbourhood two bifurcations of codimension one
come close to each other, and therefore have to be treated collectively. Examples of that
situation have been studied by Main and Wunner [9, 10] as well as Schomerus and Haake
[11,12,21].

The bifurcation scenarios described in the literature so far only involve bifurcations of
real orbits. However, one should also expect bifurcations of ghost orbits to be possible and of
particular importance for complicated bifurcation scenarios with codimension greater than one.
It is the purpose of this paper to demonstrate that ghost orbit bifurcations do occur and have
a pronounced effect on semiclassical spectra. To this end, we present an example taken from
the diamagnetic Kepler problem. It turns out that even the analysis of the period-quadrupling
bifurcation of one of the shortest periodic orbits in that system requires the inclusion of a ghost
bifurcation.

The appearance of ghost orbit bifurcations represents an additional challenge for the
construction of uniform approximations. It turns out that normal form theory allows one to treat
both ghost bifurcations and bifurcations of real orbits on an equal footing. Consequently, ghost
bifurcations contribute to uniform approximations in much the same way as real bifurcations do.
From these observations we conclude that the occurence of ghost bifurcations in systems with
mixed regular–chaotic dynamics is not a very exotic but actually quite common phenomenon.

The organization of the paper is as follows. In section 2 we describe the bifurcation
scenario of the example chosen in detail. Section 3 provides the general form of uniform
approximations. Section 4 presents the normal form describing the bifurcation scenario in
point and the discussion of how the ghost bifurcation can be included in the normal form. In
section 5 we determine the normal form parameters to quantitatively describe the bifurcations,
and in section 6 the uniform approximation is evaluated.

2. The bifurcation scenario

As an example, we study the hydrogen atom in a magnetic field, which has been described in
detail, e.g., in [13–15]. We assume the nucleus is fixed and regard the electron as a structureless
point charge. If the magnetic field is directed along thez-axis, the nonrelativistic Hamiltonian
describing the electron motion reads (in atomic units, withγ = B/(2.35×105 T) the magnetic
field strength)

H = 1

2
p2 +

1

2
γLz +

1

8
γ 2(x2 + y2)− 1

r
= E. (2)

Here,r is the distance from the nucleus, andLz denotes the angular momentum along the field
axis, which is conserved because of the rotational symmetry around that axis. In the following
we restrict ourselves to the case whereLz = 0.
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To further simplify the Hamiltonian, we exploit its scaling property with respect to the
magnetic field strengthγ . In scaled coordinates and momenta

r̃ = γ 2/3r p̃ = γ−1/3p (3)

the Hamiltonian assumes the form

H̃ = γ−2/3H = 1

2
p̃2 +

1

8
(x̃2 + ỹ2)− 1

r̃
= Ẽ. (4)

Thus, the classical dynamics does not depend on the energyE and field strengthγ separately,
but only on the scaled energỹE = γ−2/3E. From the scaling prescriptions (3) and (4) we
derive the scaling laws for classical actions and times as

S̃ = γ 1/3S T̃ = γ T . (5)

Due to the Coulomb potential, the Hamiltonian (4) is singular atr̃ = 0. The equations of
motion can be regularized by introducing semiparabolical coordinates

µ2 = r̃ + z̃ ν2 = r̃ − z̃ (6)

and a new time parameterτ defined by dt = 2r dτ . Finally, the regularized Hamiltonian is
obtained as [13–15]

H = 1
2(p

2
µ + p2

ν)− Ẽ(µ2 + ν2) + 1
8µ

2ν2(µ2 + ν2) ≡ 2 (7)

and Hamilton’s equations of motion read (with primes denoting derivatives d/dτ ),

µ′ = pµ p′µ = 2Ẽµ− 1
4µν

2(2µ2 + ν2)

ν ′ = pν p′ν = 2Ẽν − 1
4µ

2ν(µ2 + 2ν2).
(8)

These equations are free of singularities and can be easily integrated numerically. When using
them, we must keep in mind that the definition (6) determines the semiparabolical coordinates
µ, ν up to a choice of sign only, giving a many-to-one coordinate system. Thus, if we integrate
the equations of motion (8) until the trajectory closes in(µ, ν)-coordinates this may correspond
to more than one period in the original configuration space. Furthermore, we have to identify
orbits which can be transformed into one another by reflections at the coordinate axes.

We now complexify our phase space by allowing coordinates and momenta to assume
complex values. This extension allows us to look for ghost predecessors of real orbits born in
a bifurcation [9].

At any given scaled energỹE, there is a periodic orbit along the magnetic field axis. For
sufficiently low negativeẼ it is stable, while, as̃E ↗ 0, it loses and regains stability infinitely
often [13, 16]. Stability is lost, for the first time, at̃E = −0.391. At this scaled energy,
the so-called balloon orbit [17] is born as a new, stable periodic orbit. As the scaled energy
increases further, the orbit exhibits all kinds of period-m-tupling bifurcations before finally
turning unstable at̃E = −0.291.

Here, we consider the period-quadrupling bifurcation of the balloon orbit atẼc =
−0.342 025. ForẼ > Ẽc, two real satellite orbits of quadruple period exist. AsẼ ↘ Ẽc,
they collide with the balloon orbit and form an island-chain bifurcation as described in [3,4].
The real orbits are shown in figure 1 at the scaled energyẼ = −0.340. The solid and dashed
curves represent the stable and unstable satellite orbits, respectively. For comparison, the
balloon orbit is shown as a dotted curve. BelowẼc, no real satellite orbits exist. Instead, there
are a stable and an unstable complex ghost satellite. The real and imaginary parts of the stable
and unstable ghost orbits at scaled energyẼ = −0.343 are drawn as solid and dotted curves in
figure 2. Note that the imaginary parts are small compared with the real parts. As predicted by
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Figure 1. Real orbits at scaled energỹE = −0.340>
Ẽc drawn in scaled semiparabolical coordinates(µ =
γ 1/3(r + z)1/2, ν = γ 1/3(r − z)1/2). Solid and dashed
curves: stable and unstable satellites created at the period-
quadrupling bifurcation of the balloon orbit. Dotted
curve: balloon orbit.

Figure 2. Real and imaginary parts of complex ghost
orbits at scaled energỹE = −0.343. Solid and dotted
curves: stable and unstable ghost satellites created at
the period-quadrupling bifurcation of the balloon orbit at
Ẽc = −0.342 025. Dashed curve: additional ghost orbit
created at the ghost bifurcation atẼ′c = −0.343 605.

normal form theory (see section 4.1), both satellites coincide with their complex conjugates,
whence the total number of orbits is conserved in the bifurcation.

The orbits described so far form a generic type of period-quadrupling bifurcation as
investigated by Sieber and Schomerus [7]. However, the classical periodic orbit search in the
complexified phase space reveals the existence of an additional ghost orbit at scaled energies
aroundẼc. The shape of this orbit is shown as the dashed curve in figure 2. It is similar to
the stable ghost satellite originating from the period quadrupling of the balloon orbit. When
following this ghost orbit to lower energies we find another bifurcation atẼ′c = −0.343 605,
i.e. slightly below the bifurcation point̃Ec = −0.342 025 of the period quadrupling of the
balloon orbit. At energyẼ = Ẽ′c the additional ghost orbit (dashed curve in figure 2) collides
with the stable ghost satellite of the period-quadrupling bifurcation (solid curve in figure 2), and
these two orbits turn into a pair of complex conjugate ghost orbits. Their shapes are presented
at scaled energỹE = −0.344 by the solid and dashed curves in figure 3. The imaginary parts
clearly exhibit the loss of conjugation symmetry described, if the aforementioned symmetry
of the semiparabolical coordinate system is taken into account. The dotted curve in figure 3 is
the unstable ghost satellite which already exists at higher energyẼ > Ẽ′c (see the dotted curve
in figure 2).

It is important to note that the second bifurcation atẼ = Ẽ′c involves ghost orbits only.
This kind of bifurcation has not been described in the literature so far; in particular, Meyer’s
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Figure 3. Ghost orbits at scaled energỹE = −0.344 <
Ẽ′c. Solid and dashed curves: asymmetric ghosts (real
parts coincide) created at the ghost bifurcation atẼ′c =
−0.343 605. Dotted curve: unstable ghost satellite created
at the period-quadrupling bifurcation of the balloon orbit at
Ẽc = −0.342 025.

classification of codimension-one bifurcations [18] contains bifurcations of real orbits only and
does not cover ghost bifurcations. The existence of the ghost orbit bifurcation implies that the
results of [7] for the uniform semiclassical approximation for the generic period-quadrupling
bifurcation cannot be applied to the more complicated bifurcation scenario considered here. As
in cases described before by Main and Wunner [9,10] and Schomerus and Haake [11,12], the
closeness of the two bifurcations requires the construction of a uniform approximation taking
into account all orbits involved in the successive bifurcations collectively. Thus, the ghost
bifurcation atẼ′c turns out to contribute to the semiclassical approximation in the same way as
a real bifurcation would, as long as we do not go to the extreme semiclassical domain where the
bifurcations can be regarded as isolated. We will demonstrate in section 4 that the techniques
of normal form theory can be extended to include the description of ghost bifurcations.

The construction of the uniform approximation requires the knowledge of the periodic orbit
parameters of all orbits participating in the bifurcation scenario. The numerically calculated
parameters are shown in figure 4 as functions of the scaled energyẼ. Figure 4(a) displays
the actions of the periodic orbits, where the action of four repetitions of the balloon orbit was
chosen as a reference level (1S = 0). This kind of presentation exhibits the sequence of
bifurcations more clearly than a plot of the actual action integrals. AroundẼc, we recognize
two almost parabolic curves, indicating the actions of the stable (upper curve) and unstable
(lower curve) satellites, respectively. At̃Ec, the curves change from solid to dashed as the
satellites become complex. Below̃Ec, the unstable ghost satellite does not undergo any further
bifurcations in the energy range shown, whereas the stable satellite collides, atẼ′c, with the
additional ghost orbit, which can clearly be seen not to be involved in the bifurcation atẼc.
Below Ẽ′c, these two orbits are complex conjugates of each other. Thus, the real parts of their
actions coincide, whereas the imaginary parts are different from zero and have opposite signs.
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Figure 4. Actions, periods and traces of the orbits involved in the bifurcations as functions of the
scaled energỹE = Eγ−2/3. Solid curves: real orbits, dashed curves: ghost orbits symmetric with
respect to complex conjugation, dotted curves: asymmetric ghost orbits.

Analogously, figure 4(b) displays the orbital periods. Here, no differences were taken,
so that the fourth repetition of the balloon orbit, which is always real, shows up as a nearly
horizontal solid line atT̃ ≈ 5.84. The other orbits can be identified with the help of the
bifurcations they undergo, in the same way as discussed above. Finally, figure 4(c) presents
the traces of monodromy matrices minus two. These quantities agree with det(M − I ) for
systems with two degrees of freedom. AtẼc andẼ′c, they can be seen to vanish for the orbits
involved in the bifurcations, causing the divergences of the periodic orbit amplitudes (1) at the
bifurcation points.

The generic period-quadrupling bifurcation atẼc can be described with the help of lowest-
order normal form theory presented in section 4.1. As the ghost bifurcation is approached,
this description fails. However, the influence of the additional ghost orbit can be taken into
account by including higher-order terms in the normal form as discussed in section 4.2.

3. The general form of the uniform approximation

Before we return to classical normal form theory in section 4, we introduce, in this section, the
basic formulae for the quantum density of states necessary for the construction of the uniform
semiclassical approximation. The density of states of a quantum system with the Hamiltonian
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Ĥ can be expressed with the help of the Green functionG(E) = (E − Ĥ )−1 as

d(E) = − 1

π
Im TrG(E) (9)

where the trace of the Green function can be evaluated in the coordinate representation,

TrG(E) =
∫

dx′ dxδ(x′ − x)G(x′x, E). (10)

The basic steps in the formulation ofperiodic orbit theory[1, 2] are to replace the Green
functionG(x′x, E) with its semiclassical Van Vleck–Gutzwiller approximation and to carry
out the integrals in stationary-phase approximation. For systems with two degrees of freedom
the semiclassical approximation to the Green function reads

G(x′x, E) = 1

ih̄
√

2π ih̄

∑
class. traj.

√
D exp

{
i

h̄
S(x′x, E)− i

π

2
ν

}
. (11)

Here, the sum extends over all classical trajectories running fromx tox′ at energyE, S is the
action of a trajectory,ν its Maslov index, andD is defined by the second derivatives of the
action,

D = det

( ∂2S
∂x′∂x

∂2S
∂x′∂E

∂2S
∂E∂x

∂2S
∂E2

)
. (12)

The contribution of a single orbit to the density of states can be evaluated by introducing
coordinates parallel and perpendicular to the orbit. The integration along the orbit can then
be performed in a straightforward fashion. Finally, Gutzwiller’s trace formula (1) for isolated
periodic orbits is obtained by integrating over the coordinates perpendicular to the trajectory
using the stationary-phase approximation. It is this last step which fails close to a bifurcation,
where periodic orbits are not isolated.

To find an expression for the density of states which is valid close to bifurcations, it is
convenient to go over to a coordinate-momentum representation of the Green function. Close
to a period-m-tupling bifurcation of a real orbit the uniform approximation takes the form [5]

d(E) = 1

2π2mh̄2 Re
∫

dy dp′y
∂Ŝ

∂E

√√√√∣∣∣∣∣ ∂2Ŝ

∂y∂p′y

∣∣∣∣∣ exp

{
i

h̄
(Ŝ + yp′y)− i

π

2
ν̂

}
(13)

with y, p′y and Ŝ defined as follows. Let(y, py) be the canonical variables in the Poincaré
surface of section perpendicular to the bifurcating orbit, and(y ′, p′y) the corresponding
variables after the period-m cycle of the orbit. The function

Ŝ(p′yy, E) = S(y ′y,E)− y ′p′y (14)

is the Legendre transform of the action integral with respect to the final coordinate, or, in other
words, the generating function of the Poincaré map form periods of the bifurcating orbit in a
coordinate-momentum representation.

The function in the exponent in (13),

f (y, p′y, E) = Ŝ(y, p′y, E) + yp′y (15)

is stationary at the fixed points of them-traversal Poincaré map, that is, stationary points off
correspond to classical periodic orbits. In the spirit of catastrophe theory, we now relatef to
a given ansatz function8, which has the same distribution of stationary points, by a smooth
invertible change of coordinatesψ as

f (y, p′y, E) = S0(E) +8(ψ(y, p′y;E);E). (16)
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Here,ψ is assumed to keep the origin fixed,ψ(0, 0;E) = (0, 0), andS0(E) is the action of
the central bifurcating orbit. Inserting this ansatz, we obtain

d(E) = 1

2π2mh̄2 Re exp

{
i

h̄
S0(E)− i

π

2
ν̂

}

×
∫

dY dP ′Y
∂Ŝ

∂E

√√√√∣∣∣∣∣ ∂2Ŝ

∂y∂p′y

∣∣∣∣∣
√
|Hess8|
|Hessf | exp

{
i

h̄
8(Y, P ′Y )

}
(17)

where Hess denotes the Hessian matrix and the coefficient

X := ∂Ŝ

∂E

√√√√∣∣∣∣∣ ∂2Ŝ

∂y∂p′y

∣∣∣∣∣
√
|Hess8|
|Hessf | (18)

is unknown. At a stationary point of8, it can be shown to assume the value

X
sp= {m}T√|TrM − 2|

√
|Hess8| (19)

whereT andM denote the period and the monodromy matrix of the corresponding classical
orbit, and the notation{m} is meant to indicate that this factor does not occur at the satellite
orbits.

4. Normal form description of the bifurcation

To evaluate the uniform approximation (17), we need to find a suitable ansatz function8.
Normal form theory as developed by Birkhoff [19] and Gustavson [20] provides us with a
systematic way to construct such ansatz functions. We will first investigate the lowest nontrivial
order of the normal form expansion which describes generic bifurcations. Then, we will show
that higher-order terms in the expansion can account for the more complicated bifurcation
scenario studied here.

4.1. The generic period-quadrupling bifurcation

The simplest normal form describing the generic period-quadrupling bifurcations reads [3]

8 = εI + aI 2 + bI 2 cos(4ϕ). (20)

This normal form is expressed in terms of canonical (action-angle) polar coordinates(I, ϕ),
which are connected to Cartesian coordinates(p, q) by

p =
√

2I cosϕ q =
√

2I sinϕ. (21)

To establish the connection with classical periodic orbits, we need to determine the
stationary points of the normal form and then evaluate its stationary values. The stationary
points are given by the equations

0
!= ∂8

∂ϕ
= −4I 2b sin(4ϕ)

0
!= ∂8

∂I
= ε + 2aI + 2bI cos(4ϕ).

(22)

The first of these equations yields

sin(4ϕ) = 0

cos(4ϕ) = σ = ±1
(23)
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so that the second equation reads

ε + 2(a + σb)I = 0

with its solution

Iσ = − ε

2(a + σb)
. (24)

In addition, there is the central periodic orbit atI = 0, which does not show up as a stationary
point because the polar coordinate system (21) is singular at the origin.

To interpret these results, we observe that according to its definition (21) the coordinateI

is positive for real orbits and that the action difference8(I, ϕ) is real for realI, ϕ. Therefore,
negative real solutionsI correspond to ghost orbits which are symmetric with respect to
complex conjugation and thus have real actions, whereas a complexI indicates an asymmetric
ghost orbit.

Now, if |a| > |b|, the two solutionsI± have the same sign, which changes atε = 0. So,
the two satellite orbits change from two real orbits to two ghosts at the bifurcation pointε = 0,
forming an island-chain bifurcation. If|a| < |b|, I+ andI− have different signs, so that on
either side of the bifurcation there is one real and one ghost satellite. Atε = 0, the satellites
collide with the central orbit, forming a touch-and-go bifurcation.

4.2. Generalization to nongeneric bifurcations

To describe a sequence of two bifurcations, we need to include higher-order terms in the normal
form. Here, we adopt the normal form

8 = εI + aI 2 + bI 2 cos(4ϕ) + cI 3(1 + cos(4ϕ)) (25)

given by Schomerus [21] as a variant of the normal form used by Sadovskiı́ and Delos [22] to
describe a sequence of bifurcations close to a period quadrupling. It turns out to qualitatively
describe the sequence of bifurcations encountered here for suitably chosen parameter values.

The stationary points of8(I, ϕ) are given by the equations

0
!= ∂8

∂ϕ
= −4I 2(b + cI) sin(4ϕ)

0
!= ∂8

∂I
= ε + 2aI + 2bI cos(4ϕ) + 3cI 2(1 + cos(4ϕ)).

(26)

As in section 4.1, the first of these equations yields (see equation (23))

sin(4ϕ) = 0

cos(4ϕ) = σ = ±1.

Thus, the second equation reads

ε + 2(a + σb)I + 3cI 2(1 +σ) = 0. (27)

In solving this equation, we shall assumec < 0.
Forσ = −1, the equation is linear. Its only solution reads

I−1 = − ε

2(a − b) . (28)

Forσ = +1, however, we obtain a quadratic equation with two solutions:

I± = −c−1/3
(
δ ±

√
η + δ2

)
(29)
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Figure 5. A sketch of the bifurcation scenario given by the
normal form (25) for the case|a| > |b| and c < 0. Solid
curves: real orbits. Dashed curves: ghost orbits symmetric
with respect to complex conjugation. Dotted curve: a pair of
complex conjugate ghosts.

where we have introduced the abbreviations

η ≡ − ε

6c1/3
δ ≡ a + b

6c2/3
. (30)

Thus, we obtain three different stationary points corresponding to the three satellite orbits in
addition to the central periodic orbit atI = 0.

The dependence of the solutionsI on ε is shown schematically in figure 5 for the case
|a| > |b| andc < 0. Comparing the normal form results to the bifurcation scenario described
in section 2, we recognize the sequence of an island-chain bifurcation atε = 0 and a ghost
orbit bifurcation at some negative value ofε. Thus, our normal form correctly describes the
bifurcation scenario under consideration, and we adopt it as an ansatz function in the uniform
approximation (17). This correspondence allows us to identify stationary points with classical
periodic orbits as follows: The(σ = −1)-solution describes the unstable satellite orbits on
either side ofẼc. For Ẽ < Ẽ′c, the(σ = +1)-solutions correspond to the asymmetric ghost
orbits, whereas for̃E > Ẽ′c, we identify the two solutions forσ = +1 with the stable satellite
orbit (marked by the + in figure 5) and with the additional ghost (− in figure 5).

We now calculate the stationary values of the normal form, which correspond to action
differences. They read

8± = 4(η + δ2)
(
δ ±

√
η + δ2

)
+ 2ηδ

8−1 = − ε2

4(a − b) .
(31)

Finally, we need the Hessian determinants of the normal form at the stationary points. We
calculate them with respect to Cartesian coordinates, because in polar coordinates the Hessian
determinant at the central orbitI = 0 is undefined, and obtain:

Hess± = {ε + 2(a − 3b)I± − 2cI 2
±}{ε + 6(a + b)I± + 30cI 2

±}
Hess−1 = {ε + 4aI−1 + 4cI 2

−1}2 − 4I 2
−1{a − 3b − 2cI−1}2

Hess0 = ε2.

(32)

We have now found a normal form which can serve as an analytical description of the
complicated bifurcation scenario.

5. Determination of normal form parameters

In order to use the normal form (25) as an ansatz in the uniform approximation (17), we now
have to determine the normal form parametersε, a, b, c so that the numerically observed action
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differences are quantitatively reproduced by the normal form results (31). Since, according to
figure 5,ε measures the distance from the period-quadrupling bifurcation, we choose

ε = Ẽ − Ẽc (33)

and then solve equations (31) for the parametersa, b, c.
To achieve this, we introduce

h+ = 8+ +8−
8

= δ(η + δ2) +
1

2
ηδ

h− = 8+ −8−
8

= (η + δ2)3/2.

(34)

The second equation gives

η = h2/3
− − δ2 (35)

so that from the first equation we obtain

δ3− 3h2/3
− δ + 2h+ = 0. (36)

This is a cubic equation forδ. Its discriminant reads

D = h2
+ − h2

− = 1
168+8− (37)

and, using Cardani’s formula, we find its solutions

δ = λ

2
3

√
−
(√
8+ +

√
8−

)2
+
λ∗

2
3

√
−
(√
8+ −

√
8−

)2
(38)

whereλ ∈ {1,− 1
2± i

√
3

2 } is a cube root of unity. IfD > 0,λ = 1 yields the only real solution,
whereas forD < 0 all solutions are real. To proceed, we have to choose one of the three
solutions.

As can be seen from figure 4 using the correspondence between stationary points and
periodic orbits discussed above, we have8+ > 0, and there is anε0 < 0 such that8− > 0 for
ε < ε0 and8− < 0 for ε > ε0. Consequently,D > 0 for ε < ε0 andD < 0 for ε > ε0. To
makeδ real, we therefore have to chooseλ = 1 if ε < ε0.

To determineλ for ε > ε0, we first observe that the parameters must depend onε

continuously. Thus,λ can only change at energies where equation (36) has a double root,
namelyD = 0 or ε ∈ {0, ε0}. Therefore, it suffices to determineλ in a neighbourhood of
ε = 0.

From the plot of action differences in figure 4 we find

8+ = α2ε2 + O(ε3)

8− = −0 − βε + O(ε3)

with positive constantsα, β, 0. With the help of equations (38) and (35) we can now expand
η in a Taylor series to first order inε:

η =
(

1

4
− (Reλ)2

)
02/3 +

((
1

4
− (Reλ)2

)
2β

302/3
− Reλ Im λ

4α
√
0

301/3
signε

)
ε + O(ε2).

(39)

Requiring this result to reproduce the definition

η = − 1

6c1/3
ε where − 1

6c1/3
> 0
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we find the conditions

Reλ = −1

2
Im λ

2α
√
0

301/3
signε > 0

which lead to the correct choices ofλ:

λ =


1 : 8− > 0

−1

2
+ i

√
3

2
signε : 8− < 0.

(40)

Using this result, we can determineη andδ from (35) and (38). Equations (30) and (31) then
finally yield the desired parameter values

c = −
(
ε

6η

)3

a = 3c2/3δ − ε

88−1
b = 3c2/3δ +

ε

88−1
.

(41)

Note that from (41) the parametersa, b andc are explicitly determined as functions of the
energyε and the three action differences8+,8− and8−1.

In our case, we determine the normal form coefficients from the scaled action differences
shown in figure 4. To obtain the actual non-scaled coefficients for different values of the
magnetic field strengthγ , we need to derive scaling laws for the coefficients. As we display
the semiclassical spectra as functions of scaled energy, we prefer not to scale the energy
differenceε = Ẽ − Ẽc. Then, with the help of equations (31) and (32), we can convince
ourselves that the scaling prescriptions

ã = γ−1/3a b̃ = γ−1/3b c̃ = γ−2/3c (42)

fulfil the requirements of scaling actions according toS̃ = γ 1/3S while not scaling Hessian
determinants.

6. Evaluation of the uniform approximation

Now that the ansatz function8 has been completely specified, a suitable approximation to the
coefficientX in (17) remains to be found. We assumeX to be independent ofϕ, and as the value
of X is known at the stationary points off at four different values ofI (includingI = 0), we
approximateX by the third-order polynomialp(I) interpolating between the four given points.
This choice ensures that our approximation reproduces Gutzwiller’s isolated-orbits formula
if, sufficiently far away from the bifurcations, we evaluate the integral in stationary-phase
approximation. Thus, the uniform approximation takes its final form

d(E) = 1

2π2mh̄2 Re exp

{
i

h̄
S0(E)− i

π

2
ν̂

}∫
dY dP ′Y p(I ) exp

{
i

h̄
8(Y, P ′Y )

}
(43)

which contains known functions only and can be evaluated numerically.
It is important to point out, at this juncture, the progress encorporated in equation (43)

as compared with previous literature results. Starting from the lowest-order normal form
(20), Sieber and Schomerus [7] derived a similar formula for the contribution of an isolated
generic period-quadrupling bifurcation to the density of states. However, as we have seen
in section 4.1, their normal form (20) describes the central periodic orbit and the stable and
unstable satellites only, from which it is evident that the uniform approximation given by
Sieber and Schomerus cannot take the presence of the additional ghost orbit and the occurence
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Figure 6. Uniform approximation to the contribution of
the considered bifurcations to the density of states for
three different values of the magnetic field strength: (a)
γ = 10−10, (b) γ = 10−12, (c) γ = 10−14. Solid curves:
uniform approximations. Dashed curves: Gutzwiller’s
trace formula.

of the ghost orbit bifurcation into account. The effect of the latter is negligible far above the
bifurcation energyẼc, where the asymptotic behaviour is determined by the three real orbits
common to both (Sieber and Schomerus’s and our own) forms of the uniform approximation.
The Sieber and Schomerus result, however, is not capable of describing the correct asymptotic
behaviour belowẼc, because one of the satellite orbits runs into a bifurcation unforeseen by
the normal form (20) at̃E′c, thus causing Sieber and Schomerus’s uniform approximation to
diverge. BelowẼ′c, when the stable satellite orbit does not exist any more, their solution also
ceases to exist because the required input data is no longer available. Thus, to obtain a smooth
interpolation between the asymptotic Gutzwiller behaviour on either side of the bifurcations,
we must make use of the extended uniform approximation (43), which takes the contribution
of the ghost orbit bifurcation into account, as long as we do not go to the extreme semiclassical
domain where Planck’s constant has become so small that belowẼc the asymptotic regime is
reached before the ghost orbit bifurcation can produce a palpable effect. It is only in this limit
that the impact of the ghost orbit bifurcation on the semiclassical spectrum vanishes.

We calculated the uniform approximation (43) for three different values of the magnetic
field strengthγ . The results are shown in figure 6. To suppress the highly oscillatory
contributions originating from the factor exp{ i

h̄
S0(E)}, we plot the absolute value of (43)

instead of the real part. As can be seen, the uniform approximation proposed is finite at
the bifurcation energies, and, as the distance from the bifurcations increases, asymptotically
goes over into the results of Gutzwiller’s trace formula. Even the complicated oscillatory
structures in the density of states caused by interferences between the contributions from the
different real orbits involved at̃E > Ẽc = −0.342 025 are perfectly reproduced by our uniform
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approximation (see figures 6(b) and (c)). We also see that the higher the magnetic field strength,
the farther away from the bifurcation the asymptotic (Gutzwiller) behaviour is acquired. In
fact, for the largest field strength in figure 6(a) (γ = 10−10) the asymptotic region is not
reached at all in the energy domain shown. The magnetic field dependence of the transition
into the asymptotic regime can be traced back to the fact that, due to the scaling properties
of our system, the scaling parameterγ 1/3 plays the role of an effective Planck’s constant,
therefore the lowerγ becomes, the more accurate the semiclassical approximation will be.

7. Conclusion

We have shown that in Hamiltonian systems with mixed regular–chaotic dynamicsghost orbit
bifurcationscan occur besides the bifurcations of real orbits. These are of special importance
when they appear in the vicinity of bifurcations of real orbits, since they turn out to produce
signatures in the semiclassical spectra much the same as those of the real orbits. Consequently,
the traditional theory of uniform approximations for bifurcations of real orbits must be extended
to also include the effects of bifurcating ghost orbits.

We have illustrated the phenomenon of bifurcating ghost orbits in the neighbourhood
of bifurcations of real orbits by way of example for the period quadrupling of the balloon
orbit in the diamagnetic Kepler problem, and have demonstrated how normal form theory
can be extended for this case so as to allow the unified description of both realandcomplex
bifurcations.

We picked the example mainly for its simplicity, since (a) the real orbit considered is
one of the shortest fundamental periodic orbits in the diamagnetic Kepler problem and (b) the
period quadrupling is the lowest period-m-tupling possible (m = 4) that exhibits the island-
chain bifurcation typical of all higherm. Thus we expect ghost orbit bifurcations to also
appear for longer-period orbits, and, in particular, in the vicinity of all higher period-m-tupling
bifurcations of real orbits.

In fact, a general discussion of the bifurcation scenarios described by the normal form (25)
and its more general variant given in [22] for different values of the parameters leads us to the
conclusion that the appearance of ghost bifurcations in the vicinity of bifurcating real orbits is
the rule, rather than the exception, in general systems with mixed regular–chaotic dynamics,
and thus one of their generic features. It will be interesting and rewarding to study higher
period-m-tuplings with respect to the appearance of ghost orbit bifurcations, and to extend
ordinary normal form theory to also include the contributions of ghost orbit bifurcations for
all higherm.
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